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SUMMARY 

Recent developments in liquid chromatography, such as the introduction of 
small-bore columns, attempts to operate efficient open-tubular columns, the intro- 
duction of low-capacity selective ion exchangers and attempts to achieve very high 
plate numbers with techniques such as column coupling, recycling and boxcar chro- 
matography, bring the loadability problem into focus. In many of the papers devoted 
to the above topics some remarks about the sample capacity are made. 

Unfortunately, no theoretical framework seems to be in use for the description 
of peak distortion due to mass overload. As a result, experimental data apply only to 
the particular column used and cannot be transferred to other experimental con- 
ditions involving the same phase system and solute. 

It is shown that the approximate treatments by Haarhof and Van der Linden 
and by Houghton can be successfully used. The results of these treatments are com- 
pared with the results obtained by computer simulations of the chromatographic 
transport and the very high accuracy of the approximate theories is demonstrated in 
this way. By suitable reorganization and simplification of the equations, a relatively 
simple picture of mass overload is derived. This predicts that the extra peak broaden- 
ing is dependent only on the total mass of solute per gram of stationary phase 
contained in one plate. An important conclusion is that at very high efficiencies the 
maximum eluting concentration obtainable with (nearly) undistorted peaks is lower 
than with normal efficiencies. Another conclusion is that microcolumns are often a 
bad choice for trace analysis. 

INTRODUCTION 

The problem of the effect of high loads on the efficiency of chromatographic 
separations emerges as a dominating aspect in the discussion of many chromato- 
graphic techniques, such as the preparative operation of chromatographic col- 
urnnsl-, the use of microbore columns in high-performance liquid chromatography 
(HPLC)6*7, open-tubular HPLC? and trace enrichment with columnsg,iO. Numerous 
studiesll-I6 on the effect of hig loads on efficiency with standard columns have been 
carried out in liquid chromatography. Most of these were carried out with a single 
solute, or with mixtures of composition such that separation takes place in the very 
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first part of the column. Under these conditions, mutual interaction of solutes can be 
neglected. It must be admitted that from the point of view of separation such experi- 
ments and discussions connected with them are somewhat artificial, because in prac- 
tical applications of chromatography it is the separation of adjacent peaks which 
limits the load that can be applied. 

Especially in adsorption chromatography the displacement effect is often ob- 
served. A solute band is accelerated and sometimes contracted to a measurable extent 
in the presence of a large amount of another solute which moves slightly more slowly. 
The cause of such effects is clear; solutes compete for the adsorption sites and the 
molecules of the large band displace those of the first band from the adsorbent. Taken 
to the limits, this leads to displacement chromatography, but also under conditions of 
slight overload such effects may be at least as important as the distortion that would 
occur with the pure substances when chromatographed. 

In spite of this state of affairs, the present discussion is again limited to the case 
of one solute, for the following reasons: it would be useful to have a theoretical 
framework available with which the many reported single-solute experiments can be 
compared; it is doubtful whether a discussion that takes the mutual interaction of 
solutes into account could lead to general conclusions such as those arrived at in this 
paper, because first very little knowledge is available about simultaneous sorption 
isotherms, and second many more constants are needed to describe simultaneous 
sorption in a realistic model; and even if the mathematical complexity involved could 
be overcome, the translation of the results into rules and relationships applicable to 
practical situations seems impossible because of the wide variety of simultaneous 
isotherm shapes. For the one-solute case it is possible to model the sorption isotherm 
in a single two-constant relationship, realistic for slight overload conditions. 

We therefore decided to deal with the one-solute case exclusively. The purpose 
of this work was to find relationships describing loadability as a function of amount 
of packing, phase ratio, plate number, etc., and the distribution isotherm. Although 
in an absolute sense such relationships are not applicable to mixtures, in a relative 
way they are because a column with a high loadability for a single substance can also 
handle large amounts of mixtures. 

To us it is surprising that the loadability, which in many instances is as impor- 
tant to the analytical utility of columns as is the description of the infinite dilution 
behaviour by plate-height theory, has been described so little in quantitative terms. 
Instead, one often finds intuitive and qualitative reasonings about what approximate 
size of the mass load would cause “unacceptable” peak deformation. 

One such reasoning2,‘7*18 is approximately as follows. The peak shapes are 
generally observed to be of the smallest width and of gaussian shape when the injec- 
tion volume is small and the concentrations remain in the linear part of the isotherm. 
Starting with a consideration of the latter condition, a maximum value, c?, of the 
mobile phase concentration, c,, may define that linear range and the prevailing con- 
centration at the start of the transport through the column should be lower that czax. 
On the other hand, we have to consider the maximum acceptable band width at the 
start, because obviously an infinitely narrow band cannot contain any mass if the 
concentration is limited. Practice indicates and theory predicts that an initial distri- 

bution over less than ,/‘% plates hardly affects the peak shape and width (N is the 
theoretical plate number of the column). Therefore, if the load, M, is applied in such a 
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way that at the start in the first ,/‘% plates c, = crX, the peak will still be nearly 
undistorted. Taking also the distribution between the phases into account, this leads 
to the following condition for linearity: 

h4 
max 

JN vmp (1 + Ic”) < cm 
(1) 

where VmP is the volume of the mobile phase in a column length of one plate height H, 

equal to HA, where A, is the area of the cross-section of the mobile phase, and K” is 
the capacity factor at infinite dilution. 

If the load according to eqn. 1 is applied in a very small volume, the initial 
concentrations are of course larger than CF. However, in the very first stages of the 
transport process the peak will broaden quickly (because of the extreme non- 

linearity) and it will soon occupy a number of plates of the order of fi (which is not 
harmful to the peak width) and after that the transport process is linear again. Thus 
eqn. 1 would set the condition for (virtual) linear elution for all cases. 

The difficulty in this reasoning and in eqn. 1, of course, lies, in the arbitrary 
choice of the criterion for linearity with which cgax is defined. It is not clear whether 
one should accept, e.g., a 0.1 %, 1 7; or 10 y0 deviation from linearity. Also, we note in 
passing that eqn. 1 suggests that the acceptable load increases with increasing column 
length and plate number (keeping the plate height, diameter, etc., constant), which 
will be shown below not to be true. 

Not only the peak shapes and widths, but also the positions of peaks are 
influenced by the load. In a paper that is fundamental to many kinds of instrumental 
chromatography practised nowadays, SnyderI tried to correlate equilibrium data for 
non-linear isotherm cases obtained in batch experiments with retention data obtained 
with columns. He used an adaptive parameter, ~1. In fact, c( expresses the following: if 
we put A4 mol on the column, the migration rate, at any moment and any position in 
the column, will be determined by the prevailing concentration, because it is this 
concentration which determines which fraction of the molecules (there and then) is in 
the mobile phase. Clearly, the “effective” concentration, corresponding to the migra- 
tion rate observed macroscopically via the t, or R, value, is larger than 

eff 
M A4 

cm ’ 
V,,(l + K”)N = V,(l + Km) 

(2) 

because the right-hand side corresponds physically to a uniform distribution of the 
solute over the full length of the column, which we know from basic experiments not 
to be realized. In eqn. 2 I$’ is the effective concentration mentioned, and V, is the 
volume of the mobile phase in the column. 

It was then argued that the inequality in eqn. 2 is to be substituted by the 
equation 

eff _ 1 M 
c, --. 

o( V,(l + Km) 

and the proportionality constant a was adapted in such a way as to obtain reasonable 



dc, d2c, dc, 
- 

dt 
I),- - v---- 

dz 

where 
c, = 
c, = 

4 = 
t = 

Z = 

;I 

“total concentration”, defined as c, = c, + q c,; 
concentration in the mobile phase; 
volume phase ratio, VJV,; 
time; 
length coordinate; 
migration velocity of the mobile phase; 
dispersion coefficient, equal to Hv/2; 
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agreement between static data and retention parameters. 
Now, many years later, when carrying out experiments where static and reten- 

tion data are measured on the same phase systemzo-22, there seems to be no better 
formalism for non-linear cases available for qualitatively correlating these data with- 

out the use of “fudge” factors. 
In view of this very unsatisfactory situation, we decided to review and re- 

organize existing knowledge about non-linear, non-ideal chromatography, and com- 
plement this with some new numerical experiments. 

LIMITS TO THE PRESENT DISCUSSION AND ADAPTED MODEL 

Dispersion effects 

In linear chromatography numerous mathematical models representing the 
physical reality of the chromatographic transport process exist. The plate or tanks in 
series model and the dispersion or Kubin and Kucera mode123,24 constitute the two 
main families. Specific models differ inter ah in the ways the finite rate of mass 
transfer is handled and in the boundary conditions at the beginning and the end 
(“open” versus “closed” ends25). 

In contemporary chromatographic literature the rate model is mostly used. All 
linear effects within the column contributing to peak broadening, including a finite 
rate of mass transfer, are grouped together in the plate height, H26*27, equivalent to a 
dispersion coefficient D = HvJ2, where v is the mobile phase velocity. We shall adapt 
this model as we did in another discussion of chromatographic transport28. An im- 
plicit approximation, made while doing so, should be mentioned: the dependence of 
H on the capacity factor, PC, is neglected. 

Further, for reasons of mathematical convenience, we treat the “double open” 
column, i.e., the column is considered as infinitely long on both sides. Injection is 
accomplished in the model by assuming a concentration c(z,O) = I(z) profile at the 
time t = 0 around the length coordinate value z = 0. Detection is considered as 
monitoring the time course of the mobile phase concentration at a point z = L. As 
was implied already, the mobile and stationary phase concentrations, c, and cSr 
respectively, are considered to be in instantaneous equilibrium; any delay in this 
equilibrium is represented by a corresponding contribution to H or D and the depen- 
dence of this effect on K is neglected. 

This model leads to the following transport equation for the linear case: 

(3) 
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and the initial condition 

c,W) = I(4 

The one-dimensional model implies that the treatment applies to those cases only 
where radial inhomogeneities can be neglected. This is of special importance for the 
injection process. For instance, with on-column syringe injection only part of the 
sorbent bed is effective in the first part of the column. Therefore, comparison of our 
results with, e.g., those obtained by Done29 is problematic; it is not surprising that 
loadabilities as found by him are much larger than the values we arrive at. In view of 
the present widespread use of injection valves in liquid chromatography, which does 
not lead to radial inhomogeneities, we consider this limitation of our treatment as 
unimportant. 

Non-linearity effects 
As soon as the assumption of linear distribution is abandoned, the number of 

possible models increases considerably. Again, we shall limit the discussion to one 
case, which we believe is the most relevant for practical applications of chromatogra- 
phy. Fig. 1 shows some possible shapes of isotherms. Three of these (a, b and c) 
approach linearity when c, (and c,) approach zero. This is indeed what is assumed in 
elementary theory, and is found experimentally in most instances. Such isotherms can 
be effectively represented by a power series: 

9 c, = a, c, + u2 c; + f23 c;7, + . . (4) 

In this expression the left-hand side is taken as q c, rather than as c, purely for reasons 
of mathematical convenience; note that a, = K’. Curves d and e, on the other hand, 
do not approach linearity for c, + 0. An important case is, e.g., the Freundlich 
isotherm, c, = (c,)” with n < 0. Such dependences cannot be properly described by a 
Taylor series such as eqn. 4, because derivatives at c, = 0 are infinite. 

We do not deny the practical relevance of curves c and d. Freundlich isotherms 

cm 
Fig. 1. Different isotherm shalm. 

Cm 
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are frequently observed in practice. Also, curves such as that in Fig. ld might play a 
role in trace analysis. Such isotherms predict virtually normal chromatographic re- 
sponse for high concentrations, but strongly non-linear behaviour for small concen- 
trations, which occur when small amounts are injected. Indeed it is sometimes ob- 

served that the analytical response disappears more or less abruptly when the injected 
amount drops below a certain minimum3’. 

Despite their importance, such cases will not be treated here, the main reason 
being that we are primarily interested in developing an understanding of the phenom- 
ena that we may expect when overloading chromatographic systems which give 
symmetrical peaks for low mass loads. 

One further simplification is obtained when we take only the first two terms in 
the expansion 4 into account. Substitution of this into the transport eqn. 3 yields a 
differential equation which was dealt with by Haarhof and Van der Linden31 and 
Houghton . 32 They showed that an approximation can be solved analytically, and the 

approximation has a high accuracy that increases with increasing plate number. In 
order to discuss their results, it is useful to first discuss the load in amount in relation 

to expansion 4. If we plot qc, as a function of c,, as in Fig. 2a, the slope at c, = 0 
represents the capacity factor at infinite dilution, JC~. 

If eqn. 4, with two terms, describes the isotherm over a certain range, the 
fractional departure in the ratio qc,/c, from IC a is proportional to c, in that range. 
This is illustrated in Fig. 2b, where the value of qc,/c, is plotted against c,. Such a 
linear dependence of the capacity factor on the concentration is similar to that used 
successfully by Snyderig, although in the latter instance the stationary phase concen- 
tration (0) rather than c, was used. 

Extrapolating the linear plot in Fig. 2b to larger values of c,, we can define a 
concentration, C,, equal to (1 + ~~)/a~, where the value of qc,/c, has been changed 
by 1 + P. This value ?& should be given a formal significance mainly as in many 
instances a two-term truncation of eqn. 4 is not accurate at this c, value. However, 
the significance of C, lies in the fact that for not too high c, values the relative 
deviation in the retention time [ca. 1 + q(dc,/dc,)] is equal to 2c&,,*. As we are 

interested in slight deviations in K (small overload), this is all we need. T,,, measures the 
linearity of the phase system; the higher C,, the better the linearity. 

The load in amount (moles or grams), M, applied on the column should of 
course be compared in some way with the thermodynamic parameter c,. A first 
intuitive attempt is to distribute the load M hypoihetically in the equivalent of one 

Cm cm 
Fig. 2. Isotherms that can be described by a quadratic expression in c,. 

* C, is equal to 2/n, with ,li as defined in an earlier paper4. 
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plate, i.e., the mobile phase volume l&, = HA, and the associated stationary phase. 
The resulting concentration in the mobile phase can be calculated, assuming a linear 
d~.str~bLItion* as 

M 
c, = 

KJl + KY 

and the relative change in retention would be 

(5) 

The factor 2 is related to the differentiation involved in the migration equation33*34. 
The denominator of eqn. 5 is the amount of material contained in one plate when the 
factor 1 + K’= is changed by 100 % as a result of overload. As an example we treat the 
Langmuir isotherm: 

SQcm 
4’s = 1 + Qc, (6) 

in which S is the saturation uptake per volume unit mobile phase with Q being an 
additional parameter describing the capacity factor at infinite dilution. For low c, 
values eqn. 6 can be approximated by 

qcs = SQc, - SQ%: 

or 

9&n = SQ - SQ'c, 

Hence 

c, = (K~ + l)S-IQ-* 

Substitution in eqn. 5 leads to 

AK 2&l 2M 2M (Km)’ 
Kz+l=C;,= Vm,S-‘Q-2(1 + JP)’ = sv,,‘(l + Km)* 

(7) 

This relates the relative deviation in retention to the ratio of the load M and the 
capacity of the fully saturated stationary phase in one plate, S V,,. The factor (~=/l 

+ Km)’ accounts for the fact that non-linearity is unimportant when there is no 
retention. 

* This may appear odd and inconsistent with the assumed isotherm. However, this is simply a case 
where a higher order approximation is calculated with lower order estimates. 
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THE HAARHOF-VAN DER LlNDEN AND DUNCKHORST AND HOUGHTON TREATMENT 

Returning to the more general eqn. 4, it can be stated that the right-hand side 
measures the load on a “natural” scale, determined by the linearity range of the 
isotherm, as indicated by Ci,, and the volume of one plate, VmP, corrected by 1 + rc”; 
for the amount which can be accommodated by the stationary phase. 

A similar expression emerges in the work by Haarhof and Van der Linden31 
and Houghton 32 They introduced a parameter of dimension unity, m, reading in our . 
terms 

I I=/ 2A4 
m 

V&l + K”)c, I 

which is in accordance with eqn. 5. The sign of m was chosen to be positive for 
convex and negative for concave isotherms. 

The elution curve found in refs. 31 and 32 was 

L 

where 

L = 
N = 
7 = 

= 

Z(r) = 

z*(z) = 

0” = 

column length; 
plate number, L/H; 
t - tR”p 

_r2r2* 

e , 

s r 

2 _-3LI e-“2’2 dv; 

standard deviation of the peak at infinite dilution = t;Jfi. 

Eqn. 9 allows the calculation of elution functions for isotherms that are of quadratic 
shape in the concentration region of interest (well below C,). However, the derivation 
of eqn. 9 contains some assumptions and approximations that are difficult to verify, 
some of which might be especially inaccurate at low plate numbers. The question 
therefore arises of how many plates are to be passed by the solute before the accuracy 
is sufficient. Also, the derivation of eqn. 9 and its translation into practical parameters 
involves compIex mathematics, where errors could easily occur. It was therefore 
considered useful to check these results in an independent way by means of a numer- 
ical approach. 

NUMERICAL EXPERIMENTS 

The numerical simulation of the chromatographic transport process is by no 
means easy. The main difficulty encountered is the occurrence of the so-called numer- 
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ical dispersion. It is usual to sample the concentration [c(n)] in a number of equidis- 
tant points on the length axis. The changes with time in the c(n) values are calculated 
in successive passes by means of estimates of the differential quotients in eqn. 3 

derived from neighbouring c(n) values. 
In such a procedure it is difficult to simulate pure migration; for stable algo- 

rithms the migration is mostly accompanied by artificial dispersion, known as “nu- 
merical dispersion”. There are mainly two methods to deal with this. The first is the 
use of a moving frame, well known in analytica126*35 approaches to dispersion, and al- 

so applied in numerical work 36,37. However, for the non-linear case it is impossible to 

give the frame of reference the right velocity, as the migration velocity is not constant. 
The second is the use of closely spaced samples. This requires a large memory and 
computation time. Both limitations are the most pronounced if the plate numbers are 
large. As one of the objects of this work was to study the relationship between plate 
number and admissible load, the limitations can be considered serious. 

An excellent implementation of this approach was elaborated by Smit et 
al 37,38 In the Results section of this paper some data obtained by them will be used . . 
as well. 

We devised an alternative approach to the simulation. It was considered that 
instead of calculating the changes in c at particular positions (moving or not) as a 
function of time, c(z,t), it could be more effective to calculate the positions where 
certain values of c occur, and observe the change of these positions z as a function of 
time, z(c,t); in other words, we take c rather than z as the independent variable. 
According to this, eqn. 1 is rearranged to 

dc dc d2c,/dz2 = V.? + D.“._ 
dc, dc, dc,ldz (10) 

For numerical experiments, eqn. 10 has the important advantage that the term in v, 
the convention term, does not ,lead to numerical dispersion. The change in z, LIZ, 
during a time At is approximated by 

(11) 

z is sampled for equidistant values of c,. The remarkable simple eqn. 11 can be readily 
applied in this form, with suitable approximation of the derivatives by difference 
quotients, to the breakthrough fronts in non-linear chromatography. However, for 
peaks two complications occur. First, z(c,) is double valued (see Fig. 3), and the 

Fig. 3. Illustration of the simulation procedure used. Positions z for given values of c,; 0, before the time 
step; 0, same after the time step. 
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cross-over from the front edge z+(c,) to the rear edge z (c,) is troublesome. Second, 
the (equidistant) values for c, have to be chosen along the c, range at the start (injec- 
tion), but after a certain development time most of these become useless because the 
peak maximum concentration is steadily decreasing. This causes a waste of memory 
and loss of fine structure. Moreover, the concentration decrease in this numerical 
representation is manifested by the “crossing over” of points in the peak top, i.e. front 
points Z+ become smaller than rear point z-, and this causes problems in the algo- 
rithm. 

We succeeded in developing a stable algorithm, which produces plausible re- 
sults by reorganizing the grid after each pass in such a way that the c, values are again 
evenly distributed over the concentration range of the peak at that moment, i.e., the 
de, value was decreased after each pass. Details of the program and full listing and 
corresponding derivations are available on request. 

As computational facilities were restricted (HP 41C, Hewlett-Packard, Palo 
Alto, CA, U.S.A.), the isotherm was adapted to these experiments in order to simplify 
calculations and bring run times down to a practical level. In view of the occurrence 
of dc,/dc, in eqn. 11 and the choice of c, as the variable, we adopted 

R=$=R,+~~, (12) 
t 

(dc,/dc, = R, for linear chromatography). This corresponds to 

or 

1 - R, b b2 

qcs = R’C” 0 

- jg.c; + 3.E.c; + *.. 

and leads to 

(13) 

m = Mb/RV m&J = Mb(1 + rc)/Vmp (14) 

Eqn. 13 corresponds to eqn. 2; however, the third and higher terms differ from zero. 
This was expected not to be significant, and in a few experiments where eqn. 4 or 6 
was used, this was indeed corroborated. 

NUMERICAL AND ANALYTICAL RESULTS 

The capacity factor at infinite dilution was generally taken as 7/3, correspond- 
ing to R, = R, = 0.3. Eqn. 12 was the isotherm with b = 1. This limited c, to 0.7, 
because otherwise R, > 1 would occur. Large amounts therefore had to be “injected” 
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by increasing the injection width. Injection was carried out by giving C, a given value 
over a length win the column. The velocity, v, and dispersion coefficient, D, were both 
unity. 

Validity of the results 
Mathematical proof of the validity cannot be given as yet. The procedure is a 

numerical simulation, in the sense that the numerical system behaves in limiting cases 
(ideal chromatography, linear chromatography) in virtually the same way as the 
system with differential equations. We take this as sufficient indication that the results 
are valid for non-ideal, non-linear cases. 

For linear chromatography (results not shown), gaussian position curves are 
produced. The position of the peak is exactly equal to that predicted by the dispersion 
model. The peak second moment increase on migration is equal to that predicted, 
except for the fact that H values are 6 % low when twenty c, levels are used and 11% 
low with only ten c, levels. In view of the trend in the deviations we assume that this 
simply reflects the rather crude sampling (2&40 points in a peak). Also, a similar 
sampling applied to a theoretically calculated gaussian curve gives about the same 
error. 

The reproduction of the solution of the ideal, non-linear case is shown in Fig. 
4. The complete absence of dispersion effects cannot be realized.for reasons of numer- 
ical stability (as is the case in other simulation procedures). However, it can be seen 
in Fig. 4 that the results of this very time-consuming experiment approach well the 
analytica133*34 solution. 

Non-ideal, non-linear case 

Figure 5 shows the results of calculations for an intermediate load (m = 8.33) 
according to the Haarhof and Van der Linden expression31, the simulation and for 
comparison the results for a linear case with the same retention at infinite dilution. 
The close agreement between the analytical and simulation results is noteworthy. 

6b lb0 2bO 3bo * z 

Fig. 4. Convergence of the simulation result to the solution for non-linear ideal chromatography. Peak 
place functions after a time lapse of 450. Isotherm shape R = 0.3 + c,. Amount injected, 462 mass units in 
50 plates (m = 83.3). -------, Gaussian, linear peak with capacity factor of 2.33333 and pulse injection; --- 

--- injection block displaced over 135 z units; l , numerical results; --, peak shape calculated for 
ideal Lhromatography33s34. 
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cm 

T 
-0.002 

64000 6SbOO 6fiOOO siooo 66OCiQ 
-t 

Fig. 5. Elution function as calculated by the numerical experiment (0) and the Haarhof and Van der Linde 
treatment (-•-•-). A linear elution curve with the same capacity factor at infinite dilution is shown for 

comparison (------ ). Amount injected, 44.2 mass units in a uniform distribution over five plates (m = 
8.333). Column length, 2. lo4 (IO“ plates). Isotherm shape as in Fig. 4. 

Note that both calculations are absolute, no scaling or shifting in the vertical or 

horizontal direction being applied. 
Further proof of the agreement is shown in Fig. 6A and B. Capacity factors for 

the peak maximum are given. Only below t = 5 120, corresponding to approximately 
750 plates passed by the solute, do appreciable deviations occur. The open circles give 
the positions of the peak maximum as calculated from K = q(dc,/dc,) at the observed 
c, value in the peak maximum. The good agreement of these values with the full 

simulation indicate that the assumption made by Huber and Gerritse33 used in the 
determination of isotherms (peak maxima method) is jusitified, also when there is 
appreciable dispersion. 

Fig. 7 gives the position peak shapes in the column at various times after 
injection. The first three or four plots still show the effect of the injection width. 
During this stage of development the plate height increase due to the injection width 
is still of importance, although of decreasing magnitude. Around t = 640, corre- 
sponding to an elution distance of about 100 plates, there is a minimum in the 
observed plate height, which is rather flat and as yet unexplained. However, the last 
four plots in Fig. 7 illustrate the main point of this work. The peaks are virtually of 
constant shape when they elute down the column, and the relative increase in peak 
width (expressed by H values given in Fig. 7; H should be 2 for a linear case) is also 
constant. The relative importance of thermodynamic and dispersion broadening at a 
fixed load does not depend on the length passed through. It is determined exclusively 
by the load in relation to the volume of one plate and thermodynamic intensive 
parameters. 

Comparison with respect to peak moments are possible between the Haarhof 
and Van der Linden expression3r, the simulation results obtained by Smit et a1.37*38 
and the simulation discussed above. Fig. 8 gives this comparison for first moments. It 
can be seen that the agreement is good for low overloads, e.g., m < 5, and less good 
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Fig. 6. Observed capacity factors for the peak maxima (vi/z,,, - 1) as a function of the elapsed time t. 
-, Calculated according to eqn. 9; 0, from numerical experiments; 0. calculated from K = dc,/dc,; 
_ __ ____ , capacity factor K at infinite dilution. Loads: (A) m = 8.333; (B) III = 1.667. Isotherm shape as in 

Fig. 4. 

for, e.g., m = 20. However, even there the accuracy is sufficient for estimating the 
order of magnitude of the effect. 

Fig. 9 gives the same comparison for second moments, normalized on the 
infinite dilution variance, (am)*. 

DISCUSSION 

The approximate description of elution in non-linear, non-ideal chromatogra- 
phy by Haarhof and Van der Linden31 is corroborated by two types of numerical 
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Fig. 7. Shapes of peak place functions for various elapsed times t, showing the virtual invariance of the 
peak shape during migration through the column. Curves were obtained with the numerical experiment. 
Amount injected as in Fig. 6. Isotherm shape as in Fig. 4. Peak widths in the figure are normalized; the 
arrow indicates the length standard deviation that would be obtained in a corresponding linear elution 
case. Indicated H values are from the second moment, H = p2Jplz. 

simulation. There seems to be no doubt that this treatment is sufficiently accurate for 
estimating the detrimental effect of chromatography at or just above the limits of 
linearity. 

However, in order to develop these concepts into a practical tool suitable for 
the prediction of non-linearity effects under various experimental conditions, and 
suitable for understanding the consequences of changes in plate number, phase ratio, 
capacity factor, etc., it is necessary to rearrange the equations. This is so because the 

Fig. 8. I he devtatton m the first moment from that for the infinite dilution case, and expressed as a fraction 
of the standard deviation for the infinite dilution case o,, as a function of the load ITT. 
and Van der Linden expression”‘; a, results from Smit c(~/.~‘.~~; 0, 

-, Haarhof 
r esults 

number N of 800; 0, same for a plate number N = 1 .?I. 10”. 
from present work for a plate 
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Fig. 9. The second moment of peaks as predicted by two simulation experiments and by the Haarhof and 
Van der Linden expression3’. l , Results from Smit el ~l.~‘.~~; Cl, present results for a plate number N = 
X00; 0, same for a plate number N = 1.5. I@; -, Haarhof and van der Linden expression3’. 

overload thus far has been discussed in terms of mobile phase concerrtration, and tiis 
is impractical because in most instances concentrations in the stationary phase 
become too high. The conversion to stationary phase concentrations is easy when a 
model for the isotherm is given. For the case of the Langmuir isotherm, the conver- 
sion was already given as (eqn. 7) 

lcm 

i > 

2 2M 
m= ~ - 

1 + XXI SV,, 

As was shown, the peak deformation and the relative peak width increase are 
described by m exclusively. It is therefore possible to calculate an acceptable load if 
certain specifications are given. For instance, a 5 ‘A increase in the observed standard 
deviation (10 % in the second moment) may be considered as acceptable. It can be 
seen from Figs. 7 and 8 that m should then not exceed 45. At that point (rather 
arbitrarily chosen. but one could take other readings from the graphs) the change in 
the first moment is 1.0 B” and that in the peak maximum is 1.5 P (both for m = 4). 
These figures correspond to a relative deviation of 1 .O N-1/2 - 100 %, and 1.5 
N-‘!‘. 100 “/, in the retention times of the first moment and the peak maximum, 
respectively. For this case (m = 4), eqn. 7 leads to 

where V,,, is the volume of mobile phase in the column. SV,,, is equal to the amount of 
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solute absorbed at the surface contained in the column when saturated. For many 
cases this can be estimated from specific surface areas (m”/g), molecular dimensions 
(surface necessity, area required by an adsorbed molecule) and the column character- 
istics (plate number, grams of packing per unit volume). Apart from that it is readily 
determined by the break through method. 

As an example, consider a 15 cm x 4.6 I.D. column, packed with 1.3 g of a 300 
m*/g material with a plate number of 10,000, and a solute with ICY = 3, a molecular 
weight of 300 and a surface necessity of 100 A per molecule. This leads, via eqn. 15, to 

300 l?lz * 1.3 
&=I*% = 2. lo_4 (4/3)* .ioo lb_20. 6f 1023 = 2.3. lo-’ mol z 70 pg max 

which is, of course, of the right order of magnitude. The quantity SV, is proportional 
to the amount of packing, W,, in the column: 

svln = PWS (16) 

where p is a proportionality constant accounting for specific surface area and surface 
necessity. 

For numerous phase systems occurring in normal- or reversed-phase adsorp- 
tion, and for liquid-liquid partition, the Langmuir isotherm will not be applicable. 
The parameter SV,, being the amount in the saturated stationary phase, loses its 
significance in these instances. However, we can still define a similar quantity M sat as 
follows: 

(17) 

where MS is the amount in the stationary phase and e is the deviation in the capacity 
factor occurring when an amount MS is sorbed: 

A4 
--L = (1 + E) fc= wn 

For Langmuir behaviour Ma’ = SV,,.,. The quantity M”“’ will also, in other instances, 
be proportional to the amount of stationary phase, V,, in volume, or W,, in mass, and 
is dependent on the solute and phase system: 

(18) 

As indicated above, we have ,8” = p for Langmuir isotherms, and B is then de- 
termined by specific surface area and surface necessity. When overload is determined 
by the presence of too large concentrations in the stationary phase, it is to be expected 
that /I” does not vary with the phase ratio and is roughly the same for solutes of the 
same type chromatographed in the system. This discussion leads to a point that was 
one af the main objectives of this work, i.e., to make a proposal for reporting load- 
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ability. Taking the efficiency loss as the criterion (e.g., 30 y0 loss in plate number), or 
the absolute increase in H (in mm) 29 loadabilities have been reported in micrograms , 
or in micrograms per gram of packing. These values, however, apply to the column 
studied, and have the serious drawback that something which is basically a property 
of the distribution equilibrium is mixed up with the dispersion aspect of the column. 
For instance, the use of different sieve fractions of the same material in the same or 
different columns leads to different loadabilities. 

It follows from this work that normalizing the load on the amount of 
stationary phase in one plate leads to the same loadability for a phase system and 
sol&e used with different plate numbers or column sizes. We therefore propose that 
critical loads, e.g., with the criterion of a 30 % increase in H, are reported as micro- 
grams per gram in one plate, equivalent to the usual micrograms per gram multiplied 
by the plate number. 

Eluting concentration under various chromatographic conditions 
Finally, the conclusions most relevant for analytical chromatography can be 

drawn. If we aqcept that p’ or /P’ values do not depend strongly on the phase ratio 
and type of solute, the “acceptable” (defined above) load is 

(19) 

The eluting concentration for this case is equal to 

cz = 0.38 M;;F 0;’ (20) 

where CUP is the maximum concentration and gv is the volume standard deviation at 

infinite dilution. The factor 0.38 replaces l/& valid for a gaussian distribution. 
Rearrangement of eqn. 20 using TV = V,( 1 + K”)N-“~ gives 

czp = 0.76 ~-l/2 y+$p$K 
m 

(21) 

This equation applies to the case where the amount injected is already large enough to 
cause 10 ‘;/, extra peak broadening. It is to be used for comparing czp with the concen- 
tration detection limit of the detector. The ratio yields the dynamic range of the 
complete system. In this comparison it should be taken into account that the critical 
point is often the detection of traces in the presence of major constituenls. Therefore, 
c:P as given in the equation should preferably be several orders of magnitude larger 
than the detection limit. The parameters p’ and K yj in eqn. 21 are prescribed by the 
solute and phase system and by the requirements of rapid separation, respectively. 
Therefore, the remaining factors are more interesting to discuss. 

High plate numbers have a detrimental effect on detectability. This is clear 
from eqn. 21, but it can also be explained as follows. Starting, e.g., from a column as 
presently used, one can imagine a p-fold increase in its length and a resulting p-fold 
increase in the plate number, while keeping velocity, particle size, phase ratio, etc., 
constant. However, the tolerable amount then remains the same as relative peak 
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deformation is independent on the length passed. The eluting concentration is there- 

fore smaller by a factor p-I”. 
The equation also shows the small importance that small-bore columns can 

have in single-step chromatography for solving trace analytical problems (to be 
clearly distinguished from microanalytical problems, in which the sample amount is 
limited), It was shown over 10 years ago by Huber et ~1.~~ that consideration of 
volume overload leads to the conclusion that ultimately the detector sensitivity is the 
exclusive crucial point. In the present discussion it appears again that column dimen- 
sions per se have no effect on detectability; in eqn. 21 parameters such as length, 
particle size and column diameter do not occur. 

The factor /I’ applies to the type of stationary phase. Not much can be said 
about it, apart from the fact that high surface areas are advantageous in adsorption 
systems, a fairly obvious conclusion. 

Finally, eqn. 21 stresses the importance of the phase ratio q = V,/V,. Detect- 
ability is directly proportional to this factor, as long as stationary phase overload is 
the critical factor. In gas chromatography this factor is often very low, because of 
kinematic requirements and the extreme small ratio of the diffusion coefficient in the 
stationary and mobile phases. In liquid chromatography there is no such kinematic 
reason for low phase ratios; in fact, in a packed column a 1 :l ratio is perfectly feasible 
and can be even more favourable from speed and efficiency points of view than lower 
ratios. This points to renewed interest in liquid-liquid chromatography, as the 

bonded phase systems are limited to a P’JV,,, ratio of around 1:20. 
For capillary LC the formidable requirements on the volume standard devi- 

ation due to the detector have been elegantly discussed by Knox and Gilbert4’. 
However, the concentrations that can be expected were not discussed. 

Eqn. 17 contains a favourable and an unfavourable factor in this respect, The 
plate numbers for competitive open-tubular LC will be large4’, and concentrations 
will be lower in proportion to N-‘j2, However, this is a general aspect of columns of 
high plate number. On the other hand, the VJV,,, ratio can be favourable for open- 
tubular LC. It has been shown already by Tijssen et al.’ that liquid-liquid chromato- 
graphy in this geometry is possible. From the kinematic point of view there appears to 
be no reason to avoid d,/R ratios as large as 0.3-0.5 and this would bring v,/ V, phase 
ratios to values around 1, a factor of 20 more favourable that is feasible with present 
packed-column adsorption systems. 

SYMBOLS 

a, . . . a, 

b 

%l 
max 

%I 

constants describing isotherm (eqn. 4); 
constant describing non-linearity in eqn. 12; 
mobile phase concentration; 
concentration in the mobile phase at the upper limit of the linear range 
of the isotherm: 
effective mobile phase concentration in eqn. 2; 
stationary phase concentration; 
eluting mobile phase concentration at peak crest; 

(1 + 7?)/uz; 
“total concentration” = c, + qc,; 
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D 
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M 
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4 
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